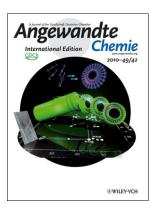


## A one-dimensional n-type ...


... semiconducting nanotube is formed by the self-assembly of a naphthalenetetracar-boxylic acid diimide—lysine bolaamphiphile. In their Communication on page 7688 ff., J. R. Parquette and co-workers show how the nanotubes aggregate into a monolayer membrane that curves into rings, which then stack into tubes. Solid-state NMR studies show that there is exceptional conformational homogeneity among the constituent molecules that comprise the nanotubes, leading to efficient energy migration within the assemblies.



## **Inside Cover**

Hui Shao, James Seifert, Natalie C. Romano, Min Gao, Jonathan J. Helmus, Christopher P. Jaroniec, David A. Modarelli, and Jon R. Parquette\*

A one-dimensional n-type semiconducting nanotube is formed by the self-assembly of a naphthalenetetracarboxylic acid diimide—lysine bolaamphiphile. In their Communication on page 7688 ff., J. R. Parquette and co-workers show how the nanotubes aggregate into a monolayer membrane that curves into rings, which then stack into tubes. Solid-state NMR studies show that there is exceptional conformational homogeneity among the constituent molecules that comprise the nanotubes, leading to efficient energy migration within the assemblies.

